03-16-2016, 09:09 AM
Regarding the EEProm, the reason I mention it is to use it as example for explaining that this topology do not require modification on the Wifi Remote I2c's firmware and server (which is not an easy task) if your application require to add in another I2c device. I did not mean that EEProm should be part of the solution. But if you want to develop your own firmware to include the EEProm using the Wifi Remote I2c as a stand alone data logger, you are welcome to do that.
Anyway, the default generic solution that we are going to provide will be according to the topology layout I mention previously. You still need to use the UART Programming Adapter to configure the SSID/Password/Server IP into the Wifi Remote I2c device before start using the device. When the Wifi Remote I2c device is power up, it will auto connect into your wifi network, after that connect to the server without user intervention.
At the same time, you can also use the UART Programming adapter to program/develop new firmware for the device. The hardware itself is open and you can write you own firmware for it. For detail programming API for ESP8266, you can refer to Espressive BBS at http://bbs.espressif.com/viewtopic.php?f=67&t=823 . There is a lot development information on ESP8266 on http://bbs.espressif.com/
To setup the development environment under window, please check out http://www.esp8266.com/viewtopic.php?f=9&t=820
As for the I2C port on the Wifi Remote I2c, any standard device (with 3.3V I/O) that according to the I2c standard should be able to communicate with the ESP8266.
The main reason of using this topology, is that user like your good self do not need to worry about the detail connectivity between the I2c sensor/device and your application. The server will manage all the TCP linkage with the multiple Wifi Remote I2c device. You application only need to open up 1 connection to the server (you can even direct telnet into the server using telnet function in putty to test out the system. It is fully text base communication between the server and your application), and through the server, your application will be able to manage all the Wifi Remote I2c device.
As for the timestamp on the sensor data, when your application request the data from the device eg. temperature, your application only need to put the timestamp on the received data and keep the data together with the timestamp. Since the data packet is very small (typically 20 to 30bytes only), the tcp traffic from the Wifi Remote I2c to the server will be very fast (probably withing few hundred microsecond for slow network and is around 10ms if it is within you home private network).
Anyway, the default generic solution that we are going to provide will be according to the topology layout I mention previously. You still need to use the UART Programming Adapter to configure the SSID/Password/Server IP into the Wifi Remote I2c device before start using the device. When the Wifi Remote I2c device is power up, it will auto connect into your wifi network, after that connect to the server without user intervention.
At the same time, you can also use the UART Programming adapter to program/develop new firmware for the device. The hardware itself is open and you can write you own firmware for it. For detail programming API for ESP8266, you can refer to Espressive BBS at http://bbs.espressif.com/viewtopic.php?f=67&t=823 . There is a lot development information on ESP8266 on http://bbs.espressif.com/
To setup the development environment under window, please check out http://www.esp8266.com/viewtopic.php?f=9&t=820
As for the I2C port on the Wifi Remote I2c, any standard device (with 3.3V I/O) that according to the I2c standard should be able to communicate with the ESP8266.
The main reason of using this topology, is that user like your good self do not need to worry about the detail connectivity between the I2c sensor/device and your application. The server will manage all the TCP linkage with the multiple Wifi Remote I2c device. You application only need to open up 1 connection to the server (you can even direct telnet into the server using telnet function in putty to test out the system. It is fully text base communication between the server and your application), and through the server, your application will be able to manage all the Wifi Remote I2c device.
As for the timestamp on the sensor data, when your application request the data from the device eg. temperature, your application only need to put the timestamp on the received data and keep the data together with the timestamp. Since the data packet is very small (typically 20 to 30bytes only), the tcp traffic from the Wifi Remote I2c to the server will be very fast (probably withing few hundred microsecond for slow network and is around 10ms if it is within you home private network).